If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-28x+196=205
We move all terms to the left:
49x^2-28x+196-(205)=0
We add all the numbers together, and all the variables
49x^2-28x-9=0
a = 49; b = -28; c = -9;
Δ = b2-4ac
Δ = -282-4·49·(-9)
Δ = 2548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2548}=\sqrt{196*13}=\sqrt{196}*\sqrt{13}=14\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-14\sqrt{13}}{2*49}=\frac{28-14\sqrt{13}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+14\sqrt{13}}{2*49}=\frac{28+14\sqrt{13}}{98} $
| 10+40m=2(5+20m) | | 4x+14+6x-4=180 | | 15x=9(x+4) | | 10x-0=9 | | 63x0.9=x | | 0+8y=2 | | 6+2z=2 | | 14+5v=3v+14 | | (x-3)+(4x-5)=2x | | 4^8n+3=59 | | 15x+6+9x+6=180 | | 13x-0=13 | | 8(x+6)=x(3x+8) | | 13x+5+5x-5=180 | | 2(×+1)/4=3x-2 | | 360=3x+5°+5x-57° | | ⅜x-2=⅛x+4 | | 3x+0=-6 | | x^2-16x+64=29 | | 50x^2-5x-3=(5x-1)() | | 90=3x+8 | | 120=6(12+x) | | 0=-16t^2+30t+9 | | 2/3(x+2)=1/4(2x-4) | | 50x^2-5x-3=(5x-1) | | 10x^2-x+11=0 | | x^2+5x-14=90 | | (20+3x)(70-8x)=1426 | | 5^(x+4)=5^(3x−10) | | s+10=25, | | x^2+5x^2-14=90 | | 0x+0=7 |